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Abstract

This paper describes several concepts and metrics that may be used to assess various
aspects of the quality of neural net classifiers. Each concept describes a property that may
be taken into account by both designers and users of neural net classifiers when assessing
their utility. Besides metrics for assessment of the correctness of classifiers we also
introduce metrics that address certain aspects of the misclassifications. We show the
applicability of the introduced quality concepts for selection among several neural net
classifiers in the domain of thyroid disorders.
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1. Introduction

Neural nets (NNs) are being used for classification / diagnostic tasks in various
domains, including medicine [8,18,20,21,23,27,35,36,41]. Various issues play a role
during the design of such classifiers. Until now, there hardly have been strict rules
for how to design the networks apart from trial and error. It is possible to generate
several hundreds of networks based on various settings of design parameters. To
find the ‘optimal’ network for a specific classification task some yardstick or metric
is required, which facilitates a comparison of different NNs. This problem may be
approached in two different ways. First, it is possible to measure the degree to
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which the network has generalized the information contained in the set of training
instances. Second, the performance of the network can be measured for another
set of data. This process is often called cross validation when the metric used
reflects how well the correct class labels are assigned [17,40]. These measures
provide only limited insight in the performance of a network.

An additional problem is that what is an optimal network will depend on the
situation in which the network will be applied. The requirements regarding the
network’s performance will be different in a screening situation as compared to its
application in a highly specialized clinic.

In this paper, we propose several quality concepts and quality metrics that
facilitate quality assessment of NN classifiers. The metrics are used to derive actual
quality measures for a specific NN and they provide the potential user with means
to select the most appropriate network among different nets.

In the following, we will briefly describe the kind of NNs we have been
experimenting with. We will discuss issues that play a role in the design of these
networks. Next we will introduce a number of quality concepts. Each of these
quality concepts describes a property of a (neural net) classifier. Most of these
quality concepts are general and can be applied to other classifiers as well.

We will define a set of metrics that can be used to measure the extent to which
specific properties are present or absent. We show their applicability for networks
in the domain of thyroid disorders.

2. Neural-net classifiers

An NN classifier consists of a set of interconnected processors. The way the
processors are connected and what processes are performed by the interconnected
processors determine their properties (see for an overview e.g. [39]). We will
restrict ourselves to feed-forward networks that are trained by means of the
back-propagation learning mechanism [34]. Feed-forward networks consist of a
series of (fully) interconnected layers of processing units called nodes or neurons —
see Fig. 1.

The first layer — the input layer — takes as input the various attribute values.
The output of the nodes in the input layer, multiplied with the weights attached to
the links, is passed to the nodes in the hidden layer.

A hidden node collects the incoming weighted output values of the previous
layer. Besides that, it receives also the weighted value of a bias node. This bias
node always outputs the value 1. It allows for adding an offset to the sum of the
weighted inputs, similar to an offset in a regression or discriminant function.

The sum of the weighted input values is passed through a nonlinear activation
function (see Fig. 2). Various types of activation functions have been proposed,
such as sigmoidal, hyperbolic-tangent or logistic functions. The only requirements
are that the output values of the function are bounded to an interval and that the
nonlinear function can be differentiated. To avoid saturation of the nonlinear
functions during training, the total input activation has to be bounded. This can be
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Fig. 1. General structure of a feed-forward network with one hidden layer.

achieved in two ways. One either scales the weights from each input node such
that the orders of magnitude of the input value and the weights are reciprocal to
each other. The other way is to scale the input values to a certain range. We
selected a scaling for each input variable to the interval [0, 1]. By doing so, we can
use initial weights of the same order of magnitude throughout the network.

layer k-1 layer k

f]k
Fig. 2. The structure of a node in the hidden and the output layer.
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The output of a node in the hidden layer is fed into the nodes of the next layer,
again multiplied with the weights attached to the links. In principle, several hidden
layers may be used. However, it has been shown that any arbitrary discriminant
function can be built with a classifier with only one hidden layer, if enough hidden
nodes are used [25,30]. The nodes of the output layer have the same structure as
the nodes of the hidden layer(s).

What remains to be done, is to define how the required output — in our case
class membership - is mapped on the output range of the function. When the limit
values of the activation functions are used, the function has to be in saturation to
achieve a good classification. This is often not possible. Therefore, several re-
searchers have proposed to do a different mapping of the desired values, for
example on [-0.9, 0.9] or on [0.1, 0.9]. In our experiments we use the hyperbolic-
tangent function and map the desired output on 0 (not belonging to the class) and
1 (belonging to the class).

The functioning of a node in a hidden layer or the output layer can be described
as follows. The input to node j in layer k is given by

1 =T0k X W} (1)

where O/~! is the output of node i in the previous layer, Wk is the weight
associated with the link between the nodes i and j and Ij" is the input to the
activation function fjk of node j in layer k. The summation over nodes i in (1) also
includes the bias node.

The output of the node follows from

Of =ff(1f) (2)

To each node in the output layer a class label is assigned. The output value of
such a node can be interpreted as the amount of evidence in favor of the
corresponding class.

For an optimal network, the weights have to be given values such that for each
case the appropriate output is generated. Such a configuration of weight values
cannot be set a priori. This has led to the development of learning algorithms that
adapt an initial weight configuration by successive passes through a set of learning
cases. For each case, the proper class label is known, i.e. it is specified which
output node should have as output the value corresponding to ‘belonging to the
class,” while all others should have as output the value corresponding to ‘not
belonging to the class’. We denote the required output at output node j for case p
as ¢; ,. The measure of the total error for all cases in the learning set, given a
certain weight configuration, is given by

E= %EZ(C]',P - Oj','p)2 (3)

with O, being the output at node j in the output layer for case D.
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By backpropagation of the errors in the network from the output layer through the

hidden layer(s) to the input layer, the weights in the network are updated
according to

pril; = na}fpojlfp (4)
with n being the learning rate and E}fp dependent on whether one has to update
the weights of links entering a node in the output layer or entering a node in one
of the hidden layers. We refer the reader to ([34], pp 322-328) for the derivation of
the formulas. Here, we will give only the results.

For links entering the nodes in the output layer &, is defined as

875 = (i = 01 )7 (1)) (3)

in which fj"' is the derivative of the activation function of node j in the output
layer n. For links entering the nodes in the hidden layers, 8}fp is defined as

8o = £ (L) X815 Wi ™! (6)
)

This learning algorithm is repeatedly applied with the same learning set until
some stop criterion is met (percentage of correctly classified cases greater than
some threshold, total error, E, less than some threshold, numbers of passes
through the learning algorithm greater than some threshold L, etc.). Rather than
adapting the weights after processing of each case, the weights in the network were
updated after each complete pass through all learning cases, with

Awk=3"A Wi N
p

For the design of a feed-forward NN, the following issues play a role:

o The number of hidden layers and the number of nodes for each hidden layer. We
will restrict ourselves to networks with one hidden layer. How to decide about
the number of nodes in the hidden layer, is not straightforward [19,36,37]. It has
been argued that the degrees of freedom in the network, defined as the number
of weights — including those for the bias terms — has to be less than the number
of cases in the learning set [2]. We will restrict ourselves in our experiments to
networks that fulfil this requirement.

o The learning rate m has to be selected. The learning algorithm searches the space
of weight values for an optimal solution, using a gradient descent approach. The
learning rate defines the unit step size for AW. Therefore, like in all gradient
methods, a small value for the learning rate will make the convergence of the
network towards a solution slow, whereas a large value may cause the weights in
the network to ‘jump’ back and forth over the appropriate value. We used a
small learning rate, taking the slow convergence for granted.

o The composition and size of the learning set. As the network learns a mapping
between input attribute values and class labels from a set of learning cases, the
composition of the learning set plays a role in deriving networks that have
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predictive value for new cases. In our experiments we will show that various
learning sets, randomly drawn from a larger database, may result in networks
with a significantly different performance.

o The initial weights of the network. The network has to start with some weight
configuration before learning can begin. One often uses a random generator to
provide the initial weights. It will be clear that the number of iterations required
to achieve a well-performing network will depend on this weight configuration.
Furthermore, it is known that the final weight configurations that result from
different initial configurations need not to be the same, even when the networks
are trained with the same learning set. During learning, the network in general
gets stuck in a local minimum. So there is no guarantee that the absolute
minimum of the total error is found. However, it has been reported that poor
local minima are in practice rarely encountered [22]. To avoid these problems,
an algorithm has recently been proposed that provides weight configurations
that are closer to the optimal than some randomly generated configuration [29].
In our experiments, we used randomly generated initial weights to study their
effect on the performance of the classifiers.

e The type of nonlinear activation function. As there is no theoretical argument
why one function is better than the other, we have selected more or less
arbitrarily a hyperbolic-tangent function in all our experiments.

o The interpretation of the pattern of output values at the nodes in the output layer.
Most often a ‘winner takes it all’ approach is used. In this approach the class
label belonging to the output node with the highest output is assigned to a case
analyzed. This approach has some drawbacks. When all output levels are low,
the case has apparently an attribute pattern that is not recognized by the
classifier. It seems more useful to leave such a case unclassified. Also when two
or more nodes have high output values, it is not clear which class label has to be
assigned. A slight variation in the input attribute values may cause a completely
different class assignment. For that reason we have selected an approach in
which a class label is assigned to a case when one and only one output node has
an output that exceeds a (node-dependent) threshold. (In our experiments we
have set the threshold for all nodes at 0.5, the range of possible outputs being
[—1..1]). When this requirement is not fulfilled, the case stays unclassified.
From the above discussion, it is clear that guidelines for how to handle these

issues hardly exist. The developer of a neural classifier is left only with the option

to generate a large number of neural classifiers using different initial settings and
then to select the best one(s).

3. Quality concepts

In the domains of medical informatics, pattern recognition and statistics the
quality or performance of classifiers is mostly addressed by means of some
measure for the extent to which a classifier assigns the correct class labels [16].
This is, however, only one view on the quality of a classifier. An extensive
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literature survey in various domains such as laboratory medicine, computer science
and health-care management, revealed many quality concepts. Based on this
review, preliminary definitions for these concepts were established [4-6]. From this
large set, a number of essential quality concepts have been selected and a few new
ones added that are relevant to describe the properties and applicability of NN
classifiers. In this paper, we will deal only with a subset of these concepts as
metrics have not yet been defined for all of them.

Before we embark on the definition of the quality concepts we need to consider
what quality is. Brender defined quality in relation to the validation of information
systems as:

«...the degree of fulfilment of the users’ expectations” [3].

As the expectations may vary among users, this definition implies that quality
cannot be expressed by one quantity. However, it may be represented by a set of
quality characteristics (a quality profile).

A SYDPOL working group argued that

“ Another aim [of quality assessment of decision support systems] is to empha-

size the invisible properties of DSS, often concerned with the system’s theoreti-

cal basis and prerequisites” [32].

We concluded that quality assessment of both information systems and decision
support systems deals with the quantification of properties of the system under
analysis. Such properties should assist the potential users in deciding whether the
system is of any use in their situation.

An important prerequisite for a useful set of quality concepts is that each
concept describes some distinct property of a classifier. This is necessary to
characterize a specific classifier and to predict its behaviour for new cases.

Furthermore, the concepts should be generally applicable. When a concept is
domain dependent, it will have hardly any value for other applications. Also the
independence of the type of classifier analyzed is of value as it will facilitate a
comparison of several types of classifiers by means of quality measurements.

It is obvious that the concepts should be interpretable by a (potential) end user
of the classifier. When end users cannot interpret a quality concept and measure-
ment, they cannot infer the classifier’s appropriateness for their specific situation.
Consequently, the users have to know the assumptions on which the metrics rely.
For example, the users have to know how the predictive value of an outcome of a
classifier depends on the prevalence of the classes and what information is
necessary to recalculate the predictive value for their own situation.

Most quality concepts currently in use in the assessment of classifiers deal with
success issues, i.e. they describe how well a classifier is doing on a certain problem.
In some domains, like clinical chemistry, one also tries to quantify and to get
insight in the failure characteristics of the evaluated processes. Examples are
concepts like precision and accuracy for biochemical assays [9,31]. These concepts
describe the variability in repeated measurement values from the same sample and
how close these values are to the real value, respectively. Knowing what is wrong
helps in deciding what to do to correct or improve the situation.

In the following we will briefly describe some of the concepts we developed and
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used for the assessment of NN classifiers. More details and additional concepts
can be found in [4-6].

3.1. Success quality concepts

There are two success quality concepts we will deal with in this paper, Viz.
coverage and correctness
Coverage is defined as:

The extent to which a classifier is able to assign a class label to cases.
It may seem that this concept is introduced mainly because of our approach of
interpreting the values of the output nodes of an NN. The concept is, however,
equally applicable to other classifiers. An example is a linear discriminant function
for which no decision is made when the function value is in a certain range. When
the failure of a classifier to assign a class label is quantified, the concept rejection
rate is often used [10,18].
Correctness is defined as:

The extent to which a classifier is able to assign the correct class label to the

cases that are covered by the classifier.
This is a commonly used concept in assessment of classifiers. Note that in our
definition it only pertains to cases that receive a class label by the classifier.

When one is interested in the extent to which a classifier assigns proper class
labels in the whole set of cases, a concept named accordance can be used.
Accordance will only be used in our experiments during the learning of NNs as its
metric is a composite of the metrics for coverage and correctness. By using
accordance instead of either correctness or coverage, we avoid that the learning
algorithm optimizes only correctness by leaving all difficult cases unclassified or
optimizes coverage only by assigning a — possibly wrong — class label to each case.

3.2. Failure quality concepts

The failure quality concepts are complementary to the success quality concepts.
When a classifier cannot classify all cases and /or misclassifies a certain amount of
cases, these failure concepts reveal different causes for the deteriorated perfor-
mance. There are three concepts that explain why cases remain unclassified:
omittance, interference and restrictedness.

Omittance is defined as:

The extent to which the cases remain unclassified because of missing or invalid

input attribute values.

The reason for having omittance is not directly related to how the classifier works.
Omittance reflects the fact that in medicine information is not always available; for
example, a test might fail or a certain test may not be performed because it was
deemed to be unethical or economically unfeasible to perform.

Interference is defined as:

The extent to which a classifier cannot assign a class label to a case because

there seems to be supportive evidence in the input attributes for more than one

class.
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For our NNs this occurs when more than one output node has an output value that
exceeds the node’s threshold (in our case 0.5 for each node). When such a
situation occurs, the network is apparently not able to perform a proper mapping
between the input values and the output classes. This may occur because the
specific input pattern has characteristics of two or more classes or because the
network is not able to partition properly the input space. The latter can be a result
of either an insufficient number of hidden units or of insufficient training.
Interference is also a useful concept for analysing a classifier with multiple (linear)
discriminants. Here, voting schemes are often used to combine the output of the
various discriminants. Interference occurs when more than one class gets a
relatively large number of votes.
Restrictedness is defined as:

The extent to which a classifier would leave a case unclassified because it does

not seem to resemble any of the descriptions of the available classes.
Restrictedness is just the opposite of interference. Here the input pattern of a case
is so different from the input patterns of the cases in the learning set that the NN
does not contain the mapping for that input pattern to the correct class. Here
again, restrictedness is a concept rather specific for NN classifiers.

Also the correctness concept has a pair of accompanying concepts that describe
the nature of the errors made by the classifier, i.e. bias and dispersion.
Bias is defined as

The extent to which a classifier will have a preference to misclassify cases in one

or a few categories.
Our definition of bias should not be confused with the bias concept in other
domains, where it is used to indicate the systematic difference between (the
expected value of) an observed value and the target value. The only relation of our
concept with the others is the focus on the systematic aspect.
Dispersion is defined as

the extent to which a classifier evenly distributes the misclassified cases over the

categories.
Correctness can be related to the accuracy concept as used in e.g. biochemistry.
Both express the tendency to provide the correct result. The bias and dispersion
concept are both related to the precision concept [31]. Bias and dispersion as well
as precision express the variability in the results. Whereas precision takes into
account all observations, bias and dispersion are only describing how the misclassi-
fied cases are distributed in the contingency table; the table in which co-occur-
rences of class labels in the database and assigned class labels are tabulated (see
Eq. (8)).
Bias in the classification results may be corrected by changing the thresholds that
are used to interpret the output values of the nodes in the output layer. There is,
however, no guarantee that a higher overall correctness will also be obtained.

3.3. Class conditional quality concepts

So far we have introduced quality concepts that describe the general properties
of a classifier. In certain applications and situations, overlooking a certain class
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may be costly. In others, one wants perhaps to reduce the misclassifications for one
class as it involves a large number of cases. It may also be possible that a user
wants to be sure that the assignment of a certain class label has a high likelihood
of being correct as the economical and /or ethical costs of further investigations for
those cases may be high. To assess the applicability of a classifier for one’s own
situation, the global quality concepts are insufficient.

For that reason we have also defined the class conditional variants of those
concepts. The idea is that one does not express the extent to which that quality
aspect is present for the whole set of cases but only for those cases that belong to a
certain class.

For example, the class conditional coverage is defined as

the extent to which cases from a certain class are assigned a class label by the

classifier.

Such class conditional quality concepts are determined by only considering one
column or one row in the contingency table.

The idea of class conditional quality concepts is often used in the evaluation of

medical classification algorithms. For two-class classifiers class conditional correct-
ness is often expressed as the sensitivity and specificity, [15]. However, these
concepts do not take any unclassified cases into account.
Apart from quality concepts, which are conditional on the class label in the
database, the correctness, bias and dispersion can also be defined conditional on
the class label assigned by the classifier. The latter type of class conditional
correctness is also known as the predictive value of the outcome of a classifier.

4. Quality metrics

In this section, we will define a set of metrics for measuring the extent to which
a classifier has certain properties. All proposed metrics are based on the information
available in a contingency table. We define a contingency table as.follows:

( mya my, T my .
msq m;, T ms.
M= mc,l mc,2 T mc,c (8)
mc+1,1 mc+1,2 U mc+1,c
mc+2,1 mc+2,2 e mc+2,c
|Me+31 Meyzn 00 Merse |

The last three rows reflect the nonclassified cases, due to omittance, interference
and restrictedness, respectively. The elements m;;, i <c, represent the correctly
classified cases for class i.

An example contingency table is given in Table 1. Here the rows c + 1, ¢+ 2 and
¢ + 3 are merged into one row, representing the unclassified cases.
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Table 1

An example contingency table for a classifier. The numbers appearing in the shaded cells represent the
correctly classified cases

Database
C Class 1 Class 2 Class 3 Marginal
«‘11 Class 1 3 28
: Class 2 37
; Class 3 26
tl; Non. class. 2 2 4 8
' Marginal 33 33 33 99

The total number of cases that receive a class label, is defined by

s =
i

gk
Mh

m;; 9)
1

1j

Let the total number of unclassified cases be determined from

c+3 c
u=Y Ym, (10)
i=c+1 j=1

The coverage of a classifier is easily determined from

’ 11
s+u ( )

The coverage measure {2 follows a binomial distribution because passing s +u
cases through a network may be seen as a sequence of s+ u trials with two
outcomes possible for each case (it either is classified or remains unclassified), and
the processing of each case is independent of the processing of other cases.
Omittance, interference and restrictedness are expressed as fractions of the unclassi-
fied cases:

0=

Cc
. LMy
omittance | = —————
u
Y¢ m .
. j=1"%c+2,j
interference ¢ = — (12)
(o
LMy

restrictedness r =
u
The class conditional metrics for coverage, omittance, interference and restricted-
ness for the various classes in the database are defined in a similar way, by leaving
out the summations over j in (9), (10) and (12).
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For correctness several quality metrics are possible. A simple one is the fraction
of correctly classified cases defined as

Ye_m
o= k=1Mg & (13)
s
Note that this fraction is taken relative to the number of cases that are assigned a
class label by the classifier.

Also class conditional correctness metrics can be defined. Note that now we can
condition the correctness on the true class label (equivalent to the sensitivity and
specificity concepts) or the assigned class label (equivalent to the predictive value of
a classification). These quality metrics will be denoted as p? and pC, respectively. !
Let’s define

siD = E mk,i (14)
k=1
and
51C= Zmi,k (15)
k=1

Now the class conditional correctness metrics are defined as

p= i,i 16
= (16)
and
m;;
piC= <C (17)

All metrics defined so far estimate the probability of a binomial distribution.
Hence, for any metric - say x -~ one can compute the standard error of the
estimate x:

o, =1 ——— (18)

with n being the number in the denominator of the formula for the metric. When
both £n > 5 and (1 — £)n > 5 the confidence interval for x is given by

@2 ,,(0.5-% @2 ,(05-%
+M—<p ><05xs£+—"/2(“)+¢> Xo, (19)
n a/2 x n a/2 x

with @, , denoting the value cutting off the area a /2 in the upper tail of the

! Quality metrics and supporting variables, which are conditional on the true class label, are given the
superscript D; those conditional on the assigned class label the superscript C.
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standard normal distribution. When both £n > 50 and (1 —£)n > 50 the confi-
dence interval for x can be approximated by

2-@, , X0, sx<s2+ P, , X0, (20)

Another metric that is often used to quantify the degree of agreement between
two observers, but which can also be used to characterize the correctness of a
classifier, is the kappa (k) metric [7]. The x« metric determines the degree of
agreement exceeding the agreement by chance alone. This metric is defined as

p—e
= 21
k=1, (21)
with
< sPxsf
e=) —5— (22)
k=1 S

It has been shown that the interpretation of the « values is not unproblematic
{11,13,42], specifically when the different classes have largely different a priori
probabilities. In general, one can say that a x-value above 0.75 indicates excellent
agreement [11]. The standard error for « is defined in {13,14].

Contrary to the widespread use of the x-metric is the very sparse use of the
class conditional kappas [24,28]. Let’s define

D
s
D 23
e =~ (23)
and
c
S;
ef=— (24)

The term eiD denotes the marginal probability that a case belongs to class i. It is
used as the expected number of correctly classified cases in row i. The k-metric.
conditional on the assigned class label is given by

D
i

C
c_ Pi—€
«C =

o1-ef

(25)

A similar formula can be given for the «-metric conditional on the true class label.
The standard error for the conditional x-metric has been derived as [28]

s(1-eP)? =

Defining metrics for the bias and dispersion quality concepts is more difficult.
The overall dispersion concept can be interpreted as the degree to which misclassi-
fications of true class i into class j are compensated by misclassifications of the
true class j into class i. This compensation has to take into account the a priori
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class probabilities. When ten cases of class A are classified as B and only one case
of class B is classified as class A4, then there seems not to be a compensation.
However, when there are ten times as many cases in class A as compared to the
number of cases in class B, then one can say that the misclassifications compen-
sate each other completely.

To derive a metric for the overall bias /dispersion we need to normalize the
contingency table such that all columns have the same number of cases. The
number of cases belonging to class i is given by

Ri= ka,i (27)
k=1

Define R’ as the number of cases in the rarest class:

R =min{R,}] (28)
The elements of the normalized contingency table M’ are given by
, m; ; XR
m; ;= — R (29)

14

The overall dispersion of a classifier is measured as the degree of symmetry of the
normalized contingency table M’. In [12] it was shown that

c—1 c m..—m. . 2
X= Z Z ( Jsl l,])

j=1i=j+1

! ! (30)
m;,; + m;

follows a x? distribution, provided that the denominator terms in (30) are large
enough (at least 1 [33]). The overall dispersion is now defined as the likelihood that
m; ; and m;, Vj +#i, are equal:

m=x*(X, df) (31)

with df = c¢(c — 1)/2 being the degrees of freedom.
The bias metric is defined as

6=1—7m (32)

The bias and dispersion metrics can also be defined conditional on the class
labels. These conditional metrics describe different properties than the overall bias
and dispersion. We assume for a dispersed classifier that if the number of cases in
the classes is large enough the distribution or misclassified cases will follow the
reduced marginal distribution of cases. If that is not so, there is some systematic
tendency in the way the classifier misclassifies cases; the classifier is biased.
The reduced marginal distribution for class i is based on all cases in the database,
excluding the cases belonging to class i (see Fig. 3). For class i , the reduced marginal
probability follows from
R.
PP=——1— Vj=#i (33)

ZRk—Ri
k=1
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Class 1 | Class 2 | Class 3 | Marginal
Class 1
Class 2
Class 3
Unclass.
Marginal A B C T
Red. M. B/(T-A) | C/(T-A)

2 Misclassified cases, class 1
"1 Reduced marginal distribution, class 1

Fig. 3. An illustration of how the reduced marginal distribution of a class relates to the marginal
distribution in a contingency table.

The number of misclassified cases among those given class label j is given by

[+
n§ = ij’k (34)
k=1
k+j

The expected number of misclassified cases with a true class label i follows from
m;;=ni XPh Vi#j (35)
Now we can compute

(36)

i=1 m;;
it

XF is x*-distributed and the class conditional dispersion can be defined as

w =x*(XF, df) (37)
with df = ¢ — 2. Accordingly, the class conditional bias follows from

0F =1-mf (38)
Furthermore, the sign of

m;,—n, (39)

gives an indication whether a classifier is biased towards or away from class i when
a class label j is erroneously assigned.
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5. Experimental results

5.1. Clinical domain

We used a database of biochemical data on patients, who had been tested for
thyroid functional disorders, as a basis for a set of experiments. The data were
collected between 1981 and 1983 in the department of Clinical Chemistry, Copen-
hagen University Hospital at Hvidovre, Denmark. In total, the learning database
consisted of 20 Hypothyroids (Myxoedema), 50 Hyperthyroids (Thyrotoxic) and 132
Euthyroids (normals) and controls.

In all our experiments we used the following attributes on which the NNs should
diagnose the patients:

e the concentration of the triiodothyronine hormone (T3);

e the concentration of the thyroxine hormone (T4);

e the concentration of the thyroxine binding globulin (TBG) and

e the ability of serum to uptake radioactive T3.

In six cases (2 Hyperthyroids, 4 Euthyroids) measurements for TBG and /or
T3-uptake were missing, resulting in an overall omittance ¢ of 3%.

We also had a test set of 174 cases available. In this set « was 17%. Only 144
cases (12 Myxoedemas, 81 Euthyroids, 51 Thyrotoxics) had all four measurements
available. We considered this set sufficiently large to assess the performance of the
various networks we had generated from the learning set.

5.2. Factors of variation

As stated before, there are a number of design choices that influence the
resulting NN. We have varied the following parameters independently from each
other.

e The percentage of cases from the learning set used for training. We used 25, 35
and 50% of the 196 complete cases of the learning set. We grouped our
experiments according to these fractions into three experiment series.

® We used for each fraction of cases from the learning set two different levels of
model complexity, defined as the number of parameters (weights and biases) over
the number of learning cases: 0.4 and 0.6 respectively.

e For each topology (defined by the model complexity), we determined three
different sets of initial weights, each weight randomly generated in the range of
[-0.5, 05].

e For each fraction of cases, combined with a certain model complexity and set of
initial weights, several subsets of cases were randomly chosen from the learning
database. We did not pose any restriction on the class composition of the
selected cases.

We considered a network properly trained on a subset of cases from the
learning set, when it can classify correctly 96% of the training instances used
(accordance > 96%). Furthermore, we allowed the algorithm to cycle at most 2600



M. Egmont-Petersen et al. / Artificial Intelligence in Medicine 6 (1994) 359-381 375

times through the set of selected learning cases. In case the network was unable to
classify 96% of the training cases correctly after 2600 cycles, the network was
discarded. In each experiment series, we trained 300 networks with an accordance
> 96%, resulting in a total of 1200 trained and converged networks.

These 1200 networks were all tested with the 144 cases of the independent test
set. The obtained quality measures were used to test various hypotheses regarding
the influence of the design criteria on the performance of the networks. The main
conclusions are that
e networks do vary considerably regarding performance and therefore, model

selection is necessary, and
¢ the composition of the set of training cases is the only factor from those varied in

our experiments that influences performance systematically.

It was also shown that in the selection process, the user has to make a tradeoff
between the various aspects of quality. Optimizing one of the quality measures will
result in a less optional result for the others.

A few salient results warrant further discussion. First, we analyzed the reason

cases could not be classified by an NN. It turned out that in nearly all generated
networks the number of cases that could not be classified because of interference
(more than one output node had an activation larger than the threshold) exceeded
the number of cases due to restrictedness (no output node had an activation larger
than the threshold).
Fig. 4 shows the distribution of the number of networks in which a certain number
of cases could not be classified due to interference and due to restrictedness. The
graph shows the results for the 300 networks that were trained with 50% (98) of
the cases in the learning set. In the test set hardly any case could not be classified
because it didn’t fit the knowledge learned. So the set of training cases seems in
general to reflect very well the distribution of the attribute values of the cases in
real practice.

The bias /dispersion metrics were used to analyze the extent to which systematic
misclassifications were made. It turned out, that both the Hypothyroid and the
Hyperthyroid class had only misclassified Euthyroid cases. In almost all networks
these two classes are significantly biased towards the Euthyroid class. This was to
be expected from the nature of the domain. The three classes (Hypothyroid,
Euthyroid and Hyperthyroid) form a kind of continuum, ranging from a decreased
functioning to an increased functioning of the thyroid gland. Since the values of
the attributes are more or less proportional to the level of functioning of the
thyroid gland, misclassifications among the Hypo- and Hyperthyroid classes are
very unlikely.

Already in 1977 Devijver showed that within a noisy domain the user must make
a tradeoff between correctness and coverage [10]. More recently, a study showed
that classifiers derived with various methods from the same database had different
properties [35], which justifies the making of a tradeoff between the various quality
aspects. For an NN classifier it can be expected that its coverage can be altered by
changing the rule that is used to interpret the values of its output nodes. We
expect that an increase in a classifier’s coverage will lead to a drop in correctness.
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Interference versus restrictedness

Number of networks

T

0-1 4-5 8-9 12-13 16-17 20-21 24-25

Number of uncovered cases, tau=0.5
Interference Bl Restrictedness

Fig. 4. The distribution of the number of networks that had a certain number of cases not classified
because of interference and because of restrictedness. Results are shown for the 300 networks
generated from random samples of 50% of the set of training cases. The threshold for the interpreta-
tion of the activation of the nodes in the output layer was set to 0.5 for each of the nodes (r;=0.5).

We investigated whether such a tradeoff also existed among a series of networks:
do networks with a high coverage have a lower correctness and visa versa. It turned
out that this is not generally true (see Fig. 5).

Networks that have a coverage in a certain range can have a large variation in their
correctness measures. There is, however, a certain boundary beyond which no
network exists. This observation makes it necessary that the users somehow
express their preferences with respect to various quality concepts to allow for a
multicriteria decision analysis on the quality measures of the generated networks.
The users can make statements in terms of the amount of reduction in, for
example, correctness they are willing to accept for a certain increase in another
quality measure.

That this tradeoff not only can be made for correctness and coverage is shown
in Fig. 6. In this scatterplot of correctness versus bias, three different preference
profiles are shown. Preference 1 indicates that the user is willing to have a lower
correctness, providing that the misclassifications are dispersed (the misclassifica-
tions of class A as class B are cancelled by approximately the same amount of
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Fig. 5. A scatter plot of correctness versus coverage for a series of networks. There seems to be a
boundary on the ‘optimal’ performance of a network, allowing for a tradeoff between correctness and
coverage. Data are shown for the networks trained with 25% of the cases of the learning set. The curve

indicates the limit which cannot be exceeded.

-
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cases of class B that are classified as class A). Preference 2 indicates a user who
just wants to have the best correctness. He does not mind whether the classifier is
biased or dispersed. Preference 3 indicates the profile of a user who prefers a
biased classifier and is willing to have a less correct classifier, provided it is more
biased, but only to a certain extent.
Clearly the selection of an optimal NN classifier is not a trivial task. In fact, one
needs a full multicriteria decision making support for finding the network(s) that
best meets user needs. This is particularly true when the users want to express
their quality preferences on the basis of the conditional quality metrics. For
example, are they willing to have a lower correctness for class A when the coverage
for class B increases, and to what extent? A thorough discussion of this issue is out
of scope of this paper. It suffices here to indicate that our experimentations with a
technique called ‘Pareto race’ [26] showed promising results. However, more
experimentation and comparison with other methods like fuzzy sets [43] is needed,
before a generally valid statement about the utility of this approach can be made.



378 M. Egmont-Petersen et al. / Artificial Intelligence in Medicine 6 (1994) 359-381

Correctness versus bias/dispersion
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Fig. 6. A scatter plot of correctness versus bias, together with 3 different preference profiles. This figure
shows the networks in which only T3 and T4 were utilized. Most of the networks were biased. The three
curves illustrate how different users’ indifference curves might look like.

LS

6. Conclusions

In this paper we argued for the need of several quality measures to describe the
properties of an NN classifier. We introduced a set of quality concepts that is part
of a larger framework. We provided a set of metrics covering all quality concepts
presented. It was shown that these quality concepts and the corresponding metrics
allow users to define criteria that can be used to select a (small) subset of networks
that fulfil their needs. The quality concepts presented here are the more basic
ones. Among others, one needs to have insight into e.g. the robustness, the
credibility, time dependency and ultimately the transferability of a (series of)
networks before one will embark on using an NN routinely for a particular task.

Although we focused mainly on the application of the quality concepts and
metrics for NNs, the concept of testing and quantifying various quality aspects
holds for other types of classifiers as well.
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